Systems Thinking Assessment of Multidiscipline Teams at NASA Langley Research Center

with Implications for their Formation, Management, and Operation

(Internal Dynamics)

Jean-Francois Barthelemy, Ken Jones, Rich Silcox, Walt Silva, Marty Waszak

NASA Langley Research Center

Ron Nowaczyk

ICASE & Clemson University

with assistance from

Julia Sager, *Innovation Associates* Charlie Sapp, *Innovation Associates*

Outline

- Key Objectives
- Systems Thinking Overview
- Approach
- Diagrams and Analysis
 - Clarity of Mission
 - Involvement of Key Experts
 - Multidiscipline Teaming Experience
 - Willingness to be a Team Player
 - Effectiveness of Team Processes
 - Working Below the State of the Art
 - Pushing the State of the Art
- Summary
 - The Whole Story
 - Selection and Prioritization of Interventions
 Team Sponsors -- Team Leaders -- Team Members
- Concluding Remarks

Key Objectives

- Identify barriers to success for multidiscipline research teams at NASA Langley.
- Develop recommendations that will help multidiscipline teams to be more effective.

- Develop a Langley-based application of systems thinking to a real, practical, and significant issue.
- Document the effort in a case study to be available for training and a reference for future efforts.

Systems Thinking Overview

- A discipline for seeing structures (the patterns and connections) underlying seemingly diverse personal, organizational and societal issues.
- Helps us understand and describe complex issues.
- Points to higher leverage solutions to problems.
- The harder you push, the harder the system pushes back.
- The easy way out usually leads back in.
- Small changes can produce big results -- but the areas of highest leverage are often the least obvious.
- There is no blame.

Systems Thinking Framework

Our Approach

- Select recent multidiscipline teams with a "rich" history
 - Airframe Noise Team (ANT)
 - Longitudinal Controls Alternatives Project (LCAP)
 - MDO Detailed Planning Team
- Interview cross-section of team members to determine influential factors affecting success
- Identify key variables and structural elements affecting team performance
- Distinguish between internal and external dynamics
- Seek causal relationships between key variables that supported the outcomes
- Diagram the causal links and identify archetypical structures that suggest potential interventions
- Identify high-leverage interventions to achieve desired results (long-lasting, self-sustaining, involving choice)

Key Variables and Factors

- The variable central to the key issue and to most of the causal links is Team Effectiveness
- Represents a variety of <u>desired characteristics of highly</u> <u>successful teams</u>
 - ability to meet milestones and deadlines
 - high quality products
 - long-term impact
 - exceed expectations (sponsor, organization, customers)
 - effective communication
 - high productivity and efficiency

- ...

#1 - Clarity of Mission Diagram

#1 - Clarity of Mission

Key Structures and Interventions

Key Structures

- a clear mission reduces pressure for communication
- reduced communication erodes shared vision
- everyone knows what needs to be done, we don't need to talk
- open communication with significant inquiry can be seen as prying
- high bandwidth is sometimes equated with good communication

- weaken link between pressure to communicate and quality of communication (keep the pressure on)
 - develop team processes to maintain focus on priorities and mission
 - adapt to changing needs of information content
 - monitor quality and quantity of communication
 - avoid trap of equating quality with quantity and/or frequency

#2 - Involvement of Key Experts

#2 - Involvement of Key ExpertsKey Structures and Interventions

Key Structures

- improved effectiveness leads to more commitment and involvement of key experts
- dependence on scarce resources puts pressure on key experts
- fidelity to previous commitments
- limited depth in certain key skills
- individual contributions are what is recognized and rewarded

- increase availability of key skills
 - maintain and develop expertise in key areas
 - sacrifice short-term effectiveness for long-term benefit of enhanced skills and expertise ("on the job training")
- enhance commitment of those with key skills
 - appeal to benefits of "stepping up"
 - strengthen "benefits" of team participation

#3 - Multidisciplinary Teaming Experience

#3 - Multidisciplinary Teaming Experience Key Structures and Interventions

Key Structures

- creative tension is required to foster interdiscipline understanding
- as understanding develops the pressure comes off
- organizational bias toward single disciplines reinforces biases
- tension can manifest itself as personal conflicts

- develop opportunities to enhance cross-discipline understanding and appreciation
 - increased number of multidiscipline efforts
 - expectation for skills development and educational opportunities
- develop infrastructure to reduce tendency for single discipline focus
 - organizational and funding structures (e.g., ASPO)
 - program goals and objectives (e.g., 3 Pillars)
- anticipate and deal promptly with conflicts that arise when working across organizations

#4 - Willingness to be a Team Player Diagram

#4 - Willingness to be a Team PlayerKey Structures and Interventions

Key Structures

- multiplidisciplinary research often requires willingness to subordinate to team objectives
- personal success has generally been associated with sophisticated discipline expertise and individual accomplishments

- link personal success to team success and team participation
 - strengthen structures that support desire to do multidiscipline work
 - rewards, visibility, technical challenges (goals and objectives)
 - · emphasize personal benefits of team efforts
 - collaborative synergy, personal satisfaction, new knowledge / capability
 - weaken structures that support single discipline work

#5 - Effectiveness of Team Processes Diagram

#5 - Effectiveness of Team ProcessesKey Structures and Interventions

Key Structures

- effectiveness strongly dependent on turnover (loss is immediate, recovery is slow)
 - lost technical capability
 - backtracking, bringing new members up to speed
- external factors play a major role (uncertainty, lack of control)

- minimize turnover in areas where expertise is key or scarce
 - match team members with project requirements
 - maintain sponsor support
- anticipate and prepare for turnover in key areas
 - maintain flexible and adaptive team management processes to respond to changing priorities and concerns
 - utilize benchmarks and guidelines for effective research team management methods (e.g., standards, common practices)

#6 + #7 - Balancing the Level of Technology

Diagram

#6 - Working Below the State of the Art Diagram

#6 - Working Below the State of the ArtKey Structures and Interventions

Key Structures

- certain level of technology is required to achieve the objectives
- certain level of technical sophistication is needed to interest and satisfy discipline researchers
- difference between the two levels leads to erosion of commitment which exacerbates the problem (vicious circle)

- eliminate the technology deficiency
 - alter goals and objectives to increase the level of technology required
 - decrease the level of technical sophistication acceptable to individual researchers
- enhance commitment by alternate means to deal with existing deficiency
- select team members with tolerance for lower technical sophistication (match members with technologies)

#7 - Pushing the State of the Art Diagram

e.f. - External Factor

LX - Link to variable from Loop X.

#7 - Pushing the State of the ArtKey Structures and Interventions

Key Structures

- higher levels of technical challenge lead to the need for more sophisticated use of discipline technologies
- team members motivated by applications of state of the art technologies in areas of expertise
- higher level of sophistication leads to higher risk and complexity resulting in added difficulties which tend to reduce effectivness (schedule slips, blown budgets, etc.)

- accept added risk and complexity, plan for set-backs
- set objectives to raise required technology level and allowable risk
- develop experience/competence to reduce risk for given level of technology sophistication

The Whole Story?

Guidance for Selecting Interventions

- Look for interventions that
 - have impact throughout the system -- "work upstream"
 - are feasible and for which people are ready -- support is key!
- Culture and mental models are much harder to change than processes and procedures
- Implement changes in a logical sequence
 - don't do everything at once
 - start small and build momentum slowly
 - be patient
- Be sensitive to time delays
 - delays in realization, understanding, design, implementation, impact
 - people typically underestimate delays by a factor of 3 to 5

Desired Characteristics of Interventions

- Highest Leverage Points (degree of influence throughout system)
 - Level of Commitment
 - Turnover Rate
 - Interdisciplinary Understanding
 - Quality of Communication
- Feasibility and Potential for Compliance
 - Leadership, Decisiveness
 - Enhanced freedom, control, and independence
 - Streamlining, Reduction in bureaucracy, reporting, oversight, etc.
 - Opportunities for reward and advancement
- Potential for Sustainable Change
 - Procedures, Processes
 - Produce creative tension
 - Limit conflict with established cultural values

Summary of Recommended Interventions Team Sponsors and Line Management

- Build level of commitment for multidisciplinary activities
 - emphasize and strengthen benefits of team participation
 - establish challenging individual objectives/goals within a multidisciplinary context
- Enhance opportunities for cross-discipline understanding and appreciation
 - establish technical objectives that encourage discipline interactions
 - accept added risk and complexity, plan for set-backs
- Maintain and develop expertise in key areas
 - sacrifice short term effectiveness for long term benefit of enhancing skills and expertise
 - select team members with appropriate expertise for task
 - minimize turnover

Summary of Recommended Interventions Team Leaders and Team Management

- Maintain flexible and adaptive team management processes
 - maintain focus on priorities and mission
 - monitor quality of communications and adapt to changing needs of information content
 - develop and utilize benchmarks and guidelines for effective research team management methods
 - deal promptly with conflicts
- Exploit and/or develop skills and expertise needed for multidiscipline research
 - accept added technical risk and complexity, plan for setbacks
 - match team members with technical requirements
 - develop key or scarce expertise for future needs
 - anticipate and prepare for turnover
 - emphasize and enhance benefits of team participation

Summary of Recommended Interventions Team Members

- Exploit benefits of multidiscipline teaming
 - opportunities for advancement and technical achievement
 - develop new knowledge and skills
 - establish and pursue meaningful technical challenges
 - accept technical risk and complexity to meet technical challenges
- Influence team processes and procedures
 - establish and maintain flexible and adaptive team processes to respond to changing priorities
 - establish team processes that enhance interdiscipline understanding and communication
 - adapt to changing needs of information content
 - anticipate and deal promptly with conflicts

Concluding Remarks

- Results are representative of the teams that were studied
- Results represent significant aspects of team dynamics
- Likely to be representative of most multidisciplinary (and disciplinary) teams
- Additional assessment of consequences of proposed interventions are needed
 - leverage
 - influence and control
 - unintended consequences
 - significant delays
 - resource needs